On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:
Em probabilidade, o desvio padrão ou desvio padrão populacional (comumente representado pela letra grega ) é uma medida de dispersão em torno da média populacional de uma variável aleatória. O termo possui também uma acepção específica no campo da estatística, na qual também é chamado de desvio padrão amostral (comumente representado pela letra latina ) e indica uma medida de dispersão dos dados em torno de média amostral. Um baixo desvio padrão indica que os pontos dos dados tendem a estar próximos da média ou do valor esperado. Um alto desvio padrão indica que os pontos dos dados estão espalhados por uma ampla gama de valores. O desvio padrão populacional ou amostral é a raiz quadrada da variância populacional ou amostral correspondente, de modo a ser uma medida de dispersão que seja um número não negativo e que use a mesma unidade de medida dos dados fornecidos.
Tanto em probabilidade quanto em estatística, o desvio padrão é usado para expressar outros conceitos matemáticos importantes como o coeficiente de correlação, o coeficiente de variação ou a alocação ótima de Neyman, dentre outros. Há também outras medidas de desvio como o desvio médio absoluto, que fornecem propriedades matemáticas diferentes a partir do desvio padrão. O desvio padrão é mais simples, porém mais robusto que o desvio médio absoluto na prática. Além de expressar a variabilidade da população, o desvio padrão comumente é usado para medir a confiança em cálculos estatísticos e geralmente permite sintetizar os resultados de uma experiência repetida várias vezes. Por exemplo, a margem de erro de um conjunto de dados é determinada pelo cálculo do desvio padrão da média ou do desvio padrão populacional inverso da raiz quadrada do tamanho da amostra, se a mesma pesquisa for repetida várias vezes.
Esta derivação do desvio padrão geralmente é chamada de erro padrão da estimativa ou erro padrão da média (em referência à média). O erro padrão da média é calculado a partir do desvio padrão das médias, as quais poderiam ser computadas a partir de uma população se um número infinito de amostras e uma média para cada amostra fossem considerados. A margem de erro de uma pesquisa é calculada a partir do erro padrão da média (produto do desvio padrão populacional e do inverso da raiz quadrada do tamanho da amostra), e cerca do dobro do erro padrão da média é a metade da largura de 95% do intervalo de confiança para a média (populacional).
O desvio padrão é calculado em todas as áreas que usam probabilidade e estatística, em particular biologia, finanças, física e pesquisas em geral. Em ciência, os pesquisadores comumente reportam o desvio padrão dos dados experimentais. Em geral, apenas os efeitos mais de dois desvios padrões distantes do esperado são considerados estatisticamente significativos – por meio de erro aleatório normal ou variação nas medições podem-se distinguir os efeitos prováveis dos efeitos genuínos. Quando apenas uma amostra dos dados da população está disponível, o termo desvio padrão amostral pode referir-se tanto à quantidade mencionada acima quanto a uma quantidade modificada que seja uma estimativa não enviesada do desvio padrão populacional. Quando o desvio padrão populacional não é conhecido, o seu valor é aproximado por meio do desvio padrão amostral.